技术支持
来源:光虎
光波动过程中的三个基本特征
17世纪,对于光的本质成立了两大对立学说,一方是以牛顿为代表的光的粒子说,另一方是以惠更斯为代表的光的波动说。
为了验证光的波动理论,惠更斯提出了著名的惠更斯原理。但由于牛顿的声望以及当时光波动说没有完整的数学模型,粒子说的势力一直为主导。
直到1800年,英国物理学家托马斯·杨提出了干涉的概念,并利用著名的杨氏干涉实验证明了光的波动性,之后,在此基础上,马吕斯和菲涅尔分别利用波动性对偏振和衍射做出解释,并建立光波动性的数学理论和计算体系。
最后,爱因斯坦将两种学说统一为波粒二象性。所以光的干涉现象,衍射现象和偏振现象是光波动过程中的基本特征,也是物理光学的主要研究对象。
特点一
光的干涉现象是指两个或多个光波(光束)在某区域叠加时,在叠加区域内出现的各点强度稳定的强弱分布现象。要满足干涉,需要两束或多束光振动方向相同,频率相同的单色光叠加才能产生干涉。
杨氏双缝干涉实验(图1),利用同一光源S通过两个狭缝S1和S2得到的两束相干光束。由于两条狭缝到光源距离相同,所以,两束相干光束在同一波面,相位差为0,并且光强相等。
特点二
光的偏振与干涉衍射不同的是证明了光是横波,也证明了麦克斯韦电磁理论的正确性。生活中大部分照明光如日光都是自然光,自然光的振动方向是向各个方向,无规则的振动。光的偏振是一束自然光入射到各项异性晶体中,会分解为两束偏振光。
在光波中,如果光矢量的振动方向在传播过程中保持不变,只是它的大小随相位改变,这种光成为线偏振光;圆偏振光在传播过程中,它的光矢量大小不变,而方向,绕传播轴均匀的转动,端点的轨迹是一个圆;椭圆偏振光在传播过程中大小和方向都有规律的变化,光矢量端点沿着一个椭圆轨迹转动。
图2 偏振光
图3 液晶显示器发光原理
特点三
衍射,光波在传播过程中遇到障碍物时,会偏离原来的传播方向弯入障碍物的几何影区内,并在几何影区和几何照明区内形成光强的不均匀分布的现象。
17世纪菲涅尔在惠更斯的干涉理论上加以补充,发展成为惠更斯-菲涅尔原理。菲涅尔在研究了光的干涉现象以后,考虑到干涉现象来自于同一光源,它们是相干光,因而波前任意一点的光振动应该是波前上所有子波相干的结果。这种子波相干叠加的思想叫做惠更斯-菲尼尔原理。
在成像系统中,衍射问题是不可避免的,在几何光学中,因为任何光学仪器都有限制光束的光瞳。这样使原本在像方成像的点,变成一个衍射光斑。但相比波长来说,光瞳尺寸要大的多,就使得衍射像斑还是极小的。
图4 衍射图案
【来源:光虎光学内部培训资料】